NAG Toolbox for MATLAB

f08us

1 Purpose

f08us reduces a complex Hermitian-definite generalized eigenproblem $Az = \lambda Bz$ to the standard form $Cy = \lambda y$, where A and B are band matrices, A is a complex Hermitian matrix, and B has been factorized by f08ut.

2 Syntax

```
[ab, x, info] = f08us(vect, uplo, ka, kb, ab, bb, 'n', n)
```

3 Description

To reduce the complex Hermitian-definite generalized eigenproblem $Az = \lambda Bz$ to the standard form $Cy = \lambda y$, where A, B and C are banded, f08us must be preceded by a call to f08ut which computes the split Cholesky factorization of the positive-definite matrix B: $B = S^H S$. The split Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to be approximately halved.

This function overwrites A with $C = X^H A X$, where $X = S^{-1} Q$ and Q is a unitary matrix chosen (implicitly) to preserve the bandwidth of A. The function also has an option to allow the accumulation of X, and then, if Z is an eigenvector of C, XZ is an eigenvector of the original system.

4 References

Crawford C R 1973 Reduction of a band-symmetric generalized eigenvalue problem *Comm. ACM* **16** 41–44

Kaufman L 1984 Banded eigenvalue solvers on vector machines ACM Trans. Math. Software 10 73-86

5 Parameters

5.1 Compulsory Input Parameters

1: **vect – string**

Indicates whether X is to be returned.

vect = 'N'

X is not returned.

vect = 'V'

X is returned.

Constraint: **vect** = 'N' or 'V'.

2: uplo – string

Indicates whether the upper or lower triangular part of A is stored.

uplo = 'U'

The upper triangular part of A is stored.

uplo = 'L'

The lower triangular part of A is stored.

Constraint: uplo = 'U' or 'L'.

[NP3663/21] f08us.1

f08us NAG Toolbox Manual

3: ka – int32 scalar

If **uplo** = 'U', the number of superdiagonals, k_a , of the matrix A.

If **uplo** = 'L', the number of subdiagonals, k_a , of the matrix A.

Constraint: $ka \ge 0$.

4: kb - int32 scalar

If **uplo** = 'U', the number of superdiagonals, k_b , of the matrix B.

If **uplo** = 'L', the number of subdiagonals, k_b , of the matrix B.

Constraint: $ka \ge kb \ge 0$.

5: ab(ldab,*) - complex array

The first dimension of the array ab must be at least ka + 1

The second dimension of the array must be at least $max(1, \mathbf{n})$

The upper or lower triangle of the n by n Hermitian band matrix A.

The matrix is stored in rows 1 to $k_a + 1$, more precisely,

if **uplo** = 'U', the elements of the upper triangle of A within the band must be stored with element A_{ij} in $\mathbf{ab}(k_a+1+i-j,j)$ for $\max(1j-k_a) \le i \le j$;

if **uplo** = 'L', the elements of the lower triangle of A within the band must be stored with element A_{ij} in $\mathbf{ab}(1+i-j,j)$ for $j \le i \le \min(nj+k_a)$.

6: bb(ldbb,*) - complex array

The first dimension of the array **bb** must be at least $\mathbf{kb} + 1$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The banded split Cholesky factor of B as specified by **uplo**, **n** and **kb** and returned by f08ut.

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The second dimension of the array **ab** The second dimension of the array **bb**.

n, the order of the matrices A and B.

Constraint: $\mathbf{n} \geq 0$.

5.3 Input Parameters Omitted from the MATLAB Interface

ldab, ldbb, ldx, work, rwork

5.4 Output Parameters

1: ab(ldab,*) - complex array

The first dimension of the array ab must be at least ka + 1

The second dimension of the array must be at least $max(1, \mathbf{n})$

the upper or lower triangle of ab contains the corresponding upper or lower triangle of C as specified by uplo.

f08us.2 [NP3663/21]

2: x(ldx,*) – complex array

The first dimension, ldx, of the array x must satisfy

```
if vect = 'V', ldx \ge max(1, n); if vect = 'N', ldx \ge 1.
```

The second dimension of the array must be at least $max(1, \mathbf{n})$ if $\mathbf{vect} = 'V'$ and at least 1 if $\mathbf{vect} = 'N'$

The *n* by *n* matrix $X = S^{-1}Q$, if **vect** = 'V'.

If $\mathbf{vect} = \mathbf{'N'}$, \mathbf{x} is not referenced.

3: info – int32 scalar

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

```
info = -i
```

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: vect, 2: uplo, 3: n, 4: ka, 5: kb, 6: ab, 7: ldab, 8: bb, 9: ldbb, 10: x, 11: ldx, 12: work, 13: rwork, 14: info.

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B^{-1} . When f08us is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if B is ill-conditioned with respect to inversion.

8 Further Comments

The total number of real floating-point operations is approximately $20n^2k_B$, when $\mathbf{vect} = '\mathbf{N}'$, assuming $n \gg k_A, k_B$; there are an additional $5n^3(k_B/k_A)$ operations when $\mathbf{vect} = '\mathbf{V}'$.

The real analogue of this function is f08ue.

9 Example

[NP3663/21] f08us.3

f08us NAG Toolbox Manual

f08us.4 (last) [NP3663/21]